MY HOME - Automation
General features 60
Configuration 84
General rules for installation 94
Wiring diagrams 104

Introduction to the Automation system

The MY HOME Automation system allows you to manage functions in a simultaneous and integrated way. To date, these functions have been performed with special and complex electrical devices such as:

- lighting control
- control for shutters and/or electric curtains, fans, exhausters, etc.

Compared to the devices of a conventional electrical system, Automation devices have an electronic circuit with
a programmable logic and are connected in parallel with a 2-conductor BUS cable for sending information and with low voltage (27 V d.c.) electric power. There are two types of devices in the system: ■ controls, connected only to the BUS cable;
■ actuators, connected both to the BUS cable and to the 230 V a.c. power line for managing the connected load.

If it is not possible to achieve a BUS system or if you want to expand a pre-existing system without any masonry work, the Automation system can be expanded with special wire/radio interfaces and radio control devices characterised by high installation flexibility.

Wire system

The MY HOME Automation system devices are IMQ certified, as they comply with the CEI EN 50428 standard "non-automatic control devices for fixed electrical home installations and similar uses".

When the Automation system devices are configured properly, it is possible to manage the load as follows:

- Control for a single load (lamp, shutters, etc.);
- Control for one or more load groups (for example, only the shutters on the first floor, north side, etc.);

■ Simultaneous management of all loads (for example, general deactivation of all lamps in the house and/or closing of all rolling shutters).

It is also possible to carry out special functions - which can hardly be achieved with conventional electrical systems.

These functions are called scenarios, which consist of a set of simultaneous controls used for arranging the room according to the user's lifestyle. An example of a scenario can be represented by the simultaneous activation of lights, shutters, etc., which can be set by the user after getting home by using one single
control device or by using the Touch Screen menu. If the Automation system is integrated with the 2 wire Sound system and Temperature control system, the scenario can also set up a room with background music and with the required temperature.

Radio/wire interfaces

Radio system

Control devices

Control devices allow you to control the state of the actuators, thus executing different functions: ON, OFF, timing, etc., which depend on the functioning mode that has been assigned to them through an appropriate configuration.
The electronic part of these devices
is separated from the mechanical operating part so that one can choose the type, number and size of the control pushbuttons.
The device can be modular, thus meeting the different installation requirements and different functions required by the user.

Two types of keys and key covers can be used:

- 1 function key cover, one or two modules, to be used with the grey control key;
- 2 function key cover, one or two modules, to be used with the black control key;

LOWERED CONTROLS

These devices are consist of two lowered flush mounted modules. This reduces depth, leaving more room inside the box for the housing of cables, or for basic modularity devices.

LOWERED 2 MODULE CONTROL

The single and double load control performs the same functions of the previously released item. The only differences are:

■ it has been lowered to reduce the size inside the box;
■ it features two green/red bicolour LEDS (in the LIVINGLIGHT and MÀTIX version), or 4 blue/red bicolour LEDs (AXOLUTE version).

SPECIAL CONTROL

In addition to the standard functions it also enables performing all the Special functions, normally performed by three different controls: the Special function control, the extended control, and the timer control.

The Special control features 4 pushbuttons and 2 green/red bicolour LEDs (in the LIVINGLIGHT and MÀTIX version) or 4 blue/red bicolour LEDs (AXOLUTE version).

CONTROL STATUS INDICATORS
All the controls feature LEDs, which indicate their status (enabled or disabled), and make them easier to find in the dark. The intensity of the selected load status signalling LED may be adjusted or turned off using the pushbutton on the control itself.

Control devices:

controls/key covers - quick matching guide

HD = WHITE, HC = TECH, HS = ANTHRACITE, $L=$ ANTHRACITE, $N=$ WHITE, $N T=$ TECH

KEY-COVERS WITH SILK-SCREEN PRINTING*		AXOLUTE				LIVINGLIGHT				
		1 MODULE		2 MODULES		1 MODULE		2 MODULES		
Controls		1 Function	2 Functions	1 Function \square	2 Functions	1 Function art	2 Functions	1 Function	2 Functions	
	H4651M2 L4651M2 AM5831M2	$\begin{aligned} & \text { HD4915... } \\ & \text { HC4915... } \\ & \text { HS4915... } \end{aligned}$	$\begin{aligned} & \text { HD4911... } \\ & \text { HC4911... } \\ & \text { HS4911... } \end{aligned}$	$\begin{aligned} & \text { HD4915M2... } \\ & \text { HC4915/2... } \\ & \text { HS4915/2... } \end{aligned}$	$\begin{aligned} & \text { HD4911M2... } \\ & \text { HC4911/2... } \\ & \text { HS4911/2... } \end{aligned}$	L4915... N4915... NT4915...	L4911... N4915.. NT4915...	$\begin{aligned} & \text { L4915M2... } \\ & \text { N49915M2.. } \\ & \text { NT4915M2... } \end{aligned}$	L4911M2... N4915M2... NT4915M2...	
	$\begin{aligned} & \mathrm{H} 4652 / 2 \\ & \mathrm{~L} 4652 / 2 \\ & \text { AM5832/2 } \end{aligned}$	$\begin{aligned} & \text { HD4915... } \\ & \text { HC4915... } \\ & \text { HS4915... } \end{aligned}$	$\begin{aligned} & \text { HD4911... } \\ & \text { HC4911... } \\ & \text { HS4911... } \end{aligned}$	$\begin{aligned} & \text { HD4915M2... } \\ & \text { HC4915/2... } \\ & \text { HS4915/2... } \end{aligned}$	$\begin{aligned} & \text { HD4911M2... } \\ & \text { HC4911/2... } \\ & \text { HS4911/2... } \end{aligned}$	L4915... N4915... NT4915...	$\begin{aligned} & \text { L4911... N4915... } \\ & \text { NT4915... } \end{aligned}$	$\begin{aligned} & \text { L4915M2... } \\ & \text { N4915M2.. } \\ & \text { NT4915M2... } \end{aligned}$	L4911M2... N4915M2... NT4915M2...	
		$\begin{aligned} & \text { HD4915... } \\ & \text { HC4915... } \\ & \text { HS49915... } \end{aligned}$	$\begin{aligned} & \text { HD4911... } \\ & \text { HC4911... } \\ & \text { HS4911... } \end{aligned}$	$\begin{aligned} & \text { HD4915M2... } \\ & \text { HC4915/2... } \\ & \text { HS4915/2... } \end{aligned}$	$\begin{aligned} & \text { HD4911M2... } \\ & \text { HC4911/2... } \\ & \text { HS4911/2... } \end{aligned}$	L4915... N4915... NT4915...	$\begin{aligned} & \text { L4911... N4915... } \\ & \text { NT4915... } \end{aligned}$	$\begin{aligned} & \text { L4915M2... } \\ & \text { N49915M2... } \\ & \text { NT4915M2... } \end{aligned}$	$\begin{aligned} & \text { L49111M2... } \\ & \text { N4915M2... } \\ & \text { NT4915M2... } \end{aligned}$	

[^0]| MÀTIX | | | |
| :---: | :---: | :---: | :---: |
| 1 MODULE | | 2 MODULES | |
| 1 Function | 2 Functions | 1 Function | 2 Functions |
| $=$ | $=$ | 틀 | E |
| AM5911 | AM5911 | AM5911/2 | AM5911/2 |
| AM5911 | AM5911 | AM5911/2 | AM5911/2 |
| AM5911 | AM5911 | AM5911/2 | AM5911/2 |
| MÀTIX | | | |
| 1 MODULE | | 2 MODULES | |
| 1 Function | 2 Functions | 1 Function | 2 Functions |
| AM5915... | AM5911... | AM5915/2... | AM5911/2... |
| AM5915... | AM5911... | AM5915/2... | AM5911/2... |
| AM5915... | AM5911... | AM5915/2... | AM5911/2... |

SELECTION OF KEY COVERS WITH SILK- SCREEN PRINTING			
AXOLUTE MATIX	LIVINGLIGHT	SILK-SCREEN PRINTING	SILK-SCREEN PRINTING DESCRIPTION
1 FUNCTION			
	DD	0	DO NOT DISTURB
	BN	\bigcirc	STAIRCASE LIGHT
	MR	$\square \perp$	MAKETHE ROOM
AA		OFF	OFF
AB		ON	ON
AC		GEN	GEN
AD	ADN	\wedge	DIMMER
BA	AN	x	LIGHT
BB	DN	$\xrightarrow[0]{C}$	BELL
BC		g	EXHAUST FAN
BD	FN	-	KEY
BE		d	TREBLE CLEF
BF		\bigcirc	NURSE
$B G^{11}$		I	ROOM
BH		60\%)	ALARMS
2 FUNCTIONS			
AF	AFN	OFF GEN 0 N	ON/OFF/GEN
AG	AGN	OFF ON	ON/OFF
AH	AHN	$\begin{aligned} & \triangle \\ & \nabla \end{aligned}$	UP/DOWN
Al	AIN	as	ON/OFF DIMMER
BA ${ }^{1 /}$		\dot{x}	LIGHT
$B C^{1)}$		∞	EXHAUST FAN
BE ${ }^{11}$		d	TREBLE CLEF
$B F^{2)}$	BFN	(1)	SOUND SYSTEM FUNCTION
	ADN	+ -	$\begin{aligned} & + \text { UP } \\ & \text { - DOWN } \end{aligned}$

1) Key cover not available for the MÀTIX series
2) Key cover not available for the 1 and 2 module AXOLUTE series, and for the 2 module MÀTXX, LIVINGLIGHT series

Control devices

TWO OR THREE MODULE AXOLUTE SOFT TOUCH CONTROLS

This device is capable of sending actuation and adjustment commands for the automation, sound system and video door entry system functions, with the simple touch of the control.

AXOLUTE NIGHTER, WHICE AND WHITE GLASS CONTROLS

The Nighter and Whice control is a control where the traditional pushbuttons are replaced by capacitive sensors

Moving the finger close to a sensor is the same as pressing a pushbutton. The device can therefore be used to control single or group loads (e.g. Lights and Shutters), sound system, scenarios, and basic video door entry system functions.

It's produced in the versions with 3 and 4 flush mounted modules, with 6 and 8 keys respectively.

Each zone corresponding to a key is marked at the centre by a light blue LED.

When the user moves a finger close, its intensity increases sensibly, and remains so until the finger is moved away again.

This effect gives the user the feeling of activating the control. Using the appropriate configurator it is possible to select different intensity levels.

Nighter 3 module control

Whice 4 module control

INFRARED CONTROLS

IR receiver and new IR remote control:
With the receiver, the manual control can be complemented or replaced by a remote control, using the infrared remote control unit, 3529.

To the remote control pushbuttons, it is possible to associate controls
intended for 1 relay actuators for single loads, 2 relays actuators for double loads (shutter motor etc.), for the management of scenarios, as well as manage both sound systems and video door entry systems.

IR receiver

MOVEMENT AND LIGHTING

SENSORS

Thanks to the new Green switch sensors and the Lighting Management system sensors, it is possible to manage, in a My Home system, the lighting depending on the presence of people, and the level of natural light, ensuring:
■ Energy efficiency
With the new sensors it is possible to eliminate energy waste through an intelligent management of the lights, ensuring the necessary lighting levels, at the right time and in the right place. The various operating modes that can be set with the configuration enable the user to obtain different levels of energy efficiency.

Comfort and wellbeing
The new sensors also allow increasing the level of comfort of the users, with the automatic switching on of the light when entering the room, and the preservation of the desired lighting level based on external conditions.

Control devices

SCENARIO MANAGEMENT

SYSTEMS

These devices can be used to create particular and advanced comfort situations called scenarios, for example, by activating some lights to
a certain level, and positioning some shutters for watching the television, or reading a book, following the life style of the user.
Another example of an advanced
scenario that can be set using the various integrated MY HOME systems is the activation of a certain background music, the setting of the temperature and the light level of the house, when entertaining friends.

The described scenarios are managed from particular devices capable of saving in the memory all the Controls that define the scenario, and which the user can recall simultaneously by pressing one single pushbutton. The devices capable of saving and following:

NOTE (*): at the moment these devices cannot activate scenarios managed by the MH2OON scenario programmer.

Control devices

CONTROL SELECTION BASED ON THE FUNCTION TO BE MANAGED

[^1]| MANAGEMENT OF AUTOMATISMS (E.G. CURTAINS AND SHUTTERS) | | | SCENARIO MANAGEMENT USING F420 AND MH200N | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AXOLUTE | LIVINGLIGHT | MÀTIX | AXOLUTE | LIVINGLIGHT | MÀTIX |
| $\begin{aligned} & H 4652 / 2 \\ & H 4652 / 3 \end{aligned}$ | $\begin{aligned} & L 4652 / 2 \\ & L 4652 / 3 \end{aligned}$ | $\begin{aligned} & \text { AM5832/2 } \\ & \text { AM5832/3 } \end{aligned}$ | | | |
| H4651M2 | L4651M2 | AM5831M2 | H4651M2 | L4651M2 | AM5831M2 |
| $\begin{aligned} & \text { HD4654 } \\ & \text { HC4654 } \\ & \text { HS4654 } \end{aligned}$ | L4654N
 N4654N
 NT4654N | AM5834 | $\begin{aligned} & \text { HD4654 } \\ & \text { HC4654 } \\ & \text { HS4654 } \end{aligned}$ | L4654N
 N4654N
 NT4654N | AM5834 |
| | | | $\begin{aligned} & \text { HD4680 } \\ & \text { HC4680 } \\ & \text { HS4680 } \end{aligned}$ | $\begin{aligned} & \text { L4680 } \\ & \text { N4680 } \\ & \text { NT4680 } \end{aligned}$ | |
| | | | HD4653M2
 HD4653M3
 HC4653/2
 HC4653/3
 HS4653/2
 HS4653/3 | | |
| HD4657M3
 HD4657M4
 HC4657M3
 HC4657M4
 HS4657M3
 HS4657M4 | | | HD4657M3
 HD4657M4
 HC4657M3
 HC4657M4
 HS4657M3
 HS4657M4 | | |
| $\begin{aligned} & \text { H4890 } \\ & \text { HW4890 } \end{aligned}$ | $\begin{aligned} & \text { LN4890 } \\ & \text { LN4890A } \end{aligned}$ | AM5890 | H4890
 HW4890
 HC4891
 HD4891
 HS4891 | LN4890
 LN4890A
 $\lfloor 4891$
 N4891
 NT4891 | AM5890 |
| | | | HC4659
 HC4658
 HD4659
 HD4658
 HS4659
 HS4658 | $\begin{aligned} & \hline \text { L4659N } \\ & \text { L4658N } \\ & \text { N4659N } \\ & \text { N4658N } \\ & \text { NT4659N } \\ & \text { NT4658N } \end{aligned}$ | AM5659
 AM5658 |
| | | | H4648
 H4649 | LN4648
 LN4649 | |

Actuator devices

These devices execute direct controls and control the connected load in the same way as an electromechanical relay.
For this reason, they must be connected to the BUS cable using the removable terminals as well as to the 230 V a.c. supply line of the load. There are different types of actuators: they can differ by shape, size, installation features and by their controlled power.
The range includes:
■ Flush mounted two module actuators;

- Basic modularity actuators with reduced profile;
- DIN module actuators.

FLUSH-MOUNTING ACTUATOR WITH 2 MODULES

They are available with 1 and 2 interlocked relays: control for 1 single load (lamp or motor) or 1 double load (motor for shutters).
These actuators can be advantageously used as a control point, as they are provided with control pushbuttons at the front side operated by key covers.

Shutters up-down

Example of installation of a flush mounted actuator (with 2 interlocked relays) for the control of the shutters.

BASIC MODULE ACTUATOR

Basic actuators are characterized by extremely compact dimensions: width $=40.5 \mathrm{~mm}$, height $=40.5 \mathrm{~mm}$, depth $=18 \mathrm{~mm}$. These dimensions allow the actuators to be installed in junction boxes or inside the load to be controlled (for example in the bowl of a chandelier, in the structure of a lampstand, etc.).
It is also possible to place the control for two light points with their Basic actuators in a 503E box; the installation can otherwise be achieved with a 504E box or by finding new spaces for the positioning of the actuators.

NEW FLUSH MOUNTED

ACTUATOR/CONTROL
This device is fitted with 2 independent relays for the management of:

- 2 loads or 2 groups of loads, independent;
- 1 single load (rolling shutter motor). The actuator may also be configured for the management of the connected load, whilst at the same time operating as a "control device" for the management of one or more remote actuators, with operating modes typical of control device item H/L4652/2.

Actuator devices:

controls/key covers quick matching guide

HD = WHITE, HC = TECH, HS = ANTHRACITE, L = ANTHRACITE, $N=$ WHITE, NT $=$ TECH

[^2]

SELECTION OF KEY COVERS WITH SILK-SCREEN PRINTING			
AXOLUTE MATIX	LIVINGLIGHT	SILK-SCREEN PRINTING	SILK-SCREEN PRINTING DESCRIPTION
1 FUNCTION			
	DD	\mathscr{O}	DO NOT DISTURB
	BN	\bigcirc	STAIRCASE LIGHT
	MR	$\square \perp$	MAKE THE ROOM
AA		OFF	OFF
AB		ON	ON
AC		GEN	GEN
AD	ADN	\wedge	DIMMER
BA	AN	K	LIGHT
BB	DN	C	BELL
BC		of	EXHAUST FAN
BD	FN	$\bigcirc=$	KEY
BE		8	TREBLE CLEF
BF		Q	NURSE
$B G^{11}$		I	ROOM
BH		60\%	ALARMS
2 FUNCTIONS			
AF	AFN	OFF GEN [N	ON/OFF/GEN
AG	AGN	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	ON/OFF
AH	AHN	$\begin{aligned} & \triangle \\ & \nabla \end{aligned}$	UP - DOWN
Al	AIN	cin	ON/OFF DIMMER
BA ${ }^{11}$		\dot{X}	LIGHT
$B C^{1)}$		8	EXHAUST FAN
BE ${ }^{11}$		d	TREBLE CLEF
BF ${ }^{2)}$	BFN	(]i)	SOUND SYSTEM FUNCTION
	ADN	+ -	$\begin{aligned} & + \text { UP } \\ & \text { - DOWN } \end{aligned}$

1) Key cover not available for the MÀTTX series
2) Key cover not available for the 1 and 2 module AXOLUTE series, and for the 2 module MȦTX, LIVINGLIGHT series

Actuator devices

DIN MODUEL ACTUATORS

These devices are suitable for centralised installations in boards and switchboards (2 DIN modules). Available in versions with 1,2 and 4 relays for controlling single loads or double loads (motor for shutters); these devices are also provided with load control keys for carrying out an operational test.
These actuators are characterised by having the advantage of removing the rear DIN adapter and the front
cover so as to reduce the overall dimensions, thus allowing them to be installed in raceways, junction boxes, false ceilings, boxes for rolling shutters, etc.
With centralised installations, for example, DIN switchboards E215/..., MULTIBOX or with the innovative installation solution MY HOME FLATWALL*, the DIN adapter and the front cover enable you to align the profile of the adapter to that of the other DIN modular devices.

DIN actuator

Switchboard installation example

Example of installation
inside a junction box

ACTUATORS AND DIMMERS

 WITH POWER LINE SUPPLYNew actuators and dimmers, part of the Lighting Management offer range, which, thanks to the power supply from the power line, provide control of the load connected even when no power is received from the BUS. In this case, control is ensured using the keys found on the device itself. In this case, control is ensured using the keys found on the device itself; they also absorb an extremely limited amount of current from the power supply of the BUS, and therefore only have a marginal impact on the maximum number of devices that may be installed on the BUS itself.

The catalogue offers actuators in the 1,2 , and 4 relay versions with independent outputs for lighting devices only;

The power supply enables zero crossing and allows them to be particularly suitable for the management of the new energy saving lamps, such as compact fluorescent lamps and LED lamps. There are also dimmers with $0 / 10$ V output, and two new "multi load" dimmers with 1 or 2 outputs, which can control any type of load (with the exception of compact fluorescent and LED lamps), and which enable the user to install the dimmer on the system, postponing the selection of the lamp to a later date.

NEW ACTUATORS

Some devices of the Energy Management offer may also be used in the automation system.

DIN actuators:

Two actuator devices capable of performing both energy management and automation functions; one in the basic version and one fitted with an integrated current sensor for the measurement of the consumption of the controlled load (instantaneous consumption and 2 energy totalizers that can be reset independently).
Configured in automation mode, they enable performing all the operations available on the Control devices, with

the exception of the management of the shutters. The connection with the power line enables zero crossing, which makes the devices compatible with the new energy saving lamps (compact fluorescent and LED). Flush mounted actuator: Actuator conceived for installation in LIVINGLIGHT and AXOLUTE flush mounted supports, intended for the automation and/or energy management functions.

Actuator devices

ACTUATOR SELECTION BASED ON THE FUNCTION TO BE MANAGED

TYPE OF ACTUATOR	ON/OFF LIGHTING AND LOADS			
	AXOLUTE	LIVINGLIGHT	MÀTIX	
Flush mounted 2 module (*) 1 relay actuator	H4671/1	L4671/1	AM5851/1	
Flush mounted, 2 relays, 2 MODULES (*), actuator/control	H4671M2	L4671M2	AM5851M2	
Flush mounted 2 MODULE (*) dimmer actuator				
Basic actuator	3475			
Basic Actuator/Control	3476			
1, 2, 4 relay DIN actuators	F411/1N (1 relay) F411/2 (2 independent relays) F411/4 (4 independent relays with one common clamp) F411/1NC F411/2NC BMSW1001 BMSW1002 BMSW1003			
DIN Dimmer actuators				

[^3]

Actuator devices:
 selection of the actuators depending on the type of load

The table allows identification of the actuator device depending on what it is to be used for, the electrical features of the load to be controlled and the installation features.

Warning: Unless otherwise specified in the instruction leaflet, a 10 A thermal magnetic protection must be fitted on the power line to the actuators.

TABLE OF THE LOADS									
Actuators	Modules	Power supply of the device	Controllable loads						
			Incandescent and halogen lamps	LED lamps	Linear fluorescent lamps ${ }^{1)}$	Compact fluorescent lamps	Electronic transformers ${ }^{3)}$	Ferromagnetic transformers ${ }^{2 / 3}$)	Reducer motor for shutters ${ }^{4)}$
$\begin{aligned} & 3475 \\ & 3476 \end{aligned}$	Basic	BUS SCS	2 A 460W @ 230 Vac 220W @ 110 Vac	40W @ 230 Vac 20W@110Vac 1 lamp maximum	-	40W @ 230 Vac 20W@110Vac 1 lamp maximum		$2 \mathrm{~A} \cos \varphi 0.5$ 460 VA @ 230 Vac 220 VA @ 110 Vac	
F411/1N	2 DIN	BUS SCS	10 A 2300W @ 230 Vac 1100W @ 110Vac	500 W @ 230 Vac 250W @ 110 Vac 10 lamps maximum	4A 920W @ 230 Vac 440W @ 110 Vac	500W @ 230 Vac 250W @ 110Vac 10 lamps maximum	4 A 920 W @ 230 Vac 440W@110 Vac	$4 \mathrm{~A} \cos \varphi 0.5$ 920 VA @ 230 Vac 440 VA @ 110 Vac	-
F411/2	2 DIN	BUS SCS	6A 1380W @ 230 Vac 660W @ 110 Vac	250W @ 230 Vac 120W @ 110 Vac 4 lamps maximum	1 A 230W @ 230 Vac 110W @ 230 Vac	250W @ 230 Vac 120W @ 110 Vac 4 lamps maximum	1 A 230W@230 Vac 110 W @ 230 Vac	$2 A \cos \varphi 0.5$ 460VA @ 230 Vac 220VA @ 110 Vac	2A 460W @ 230 Vac 220W@110 Vac
F411/4	2 DIN	BUS SCS	2A 460W @ 230 Vac 220W@110 Vac	70W @ 230 Vac 35W @ 110Vac 2 lamps maximum	0.3 A 70W @ 230 Vac 35W @ 110Vac	70W @ 230 Vac 35W @ 110Vac 2 lamps maximum	0.3 A 70W @ 230 Vac 35W @ 110 Vac	$2 \mathrm{~A} \cos \varphi 0.5$ $460 \mathrm{VA} @ 230 \mathrm{Vac}$ 220VA @ 110 Vac	2 A 460W @ 230 Vac 220W@110Vac
F413N	2 DIN	BUS SCS	-		2 A 460W @ $230 \mathrm{Vac}{ }^{5)}$ 220W@110 Vac ${ }^{5)}$ MAX. 10 ballast type T5, T8, compact or driver for LED				
F414	4 DIN	BUS SCS	$\begin{aligned} & 0.25-4.3 \mathrm{~A} \\ & 60-1000 \mathrm{~W} @ 230 \mathrm{Vac}-50 \mathrm{~Hz} \\ & 0.25-3.5 \mathrm{~A} \\ & 60-800 \mathrm{~W} @ 230 \mathrm{Vac}-60 \mathrm{~Hz} \end{aligned}$	-	-			$\begin{aligned} & 0.25-4.3 \mathrm{~A} \\ & 60-1000 \mathrm{VA} @ 23 \mathrm{Vac}-50 \mathrm{~Hz} \\ & 0.25-3.5 \mathrm{~A} \\ & 60-800 \mathrm{VA} @ 230 \mathrm{Vac}-60 \mathrm{~Hz} \end{aligned}$	
F415	4 DIN	BUS SCS		-	-		$\begin{aligned} & 0.25-1.7 \mathrm{~A} \\ & 60-400 \mathrm{VA} \\ & @ 230 \mathrm{Vac}-50 \mathrm{~Hz} \end{aligned}$		
H/L4671/1 AM5851/1	2fush mounting	BUSSCS	6A 1380W @ 230 Vac 660W @ 110 Vac	150W @ 230 Vac 70W @ 110Vac 3 lamps maximum	0.65 A 150W @ 230 Vac 70W @ 110 Vac	150W @ 230 Vac 70W @ 110 Vac 3 lamps maximum	0.65 A 150W @ 230 Vac 70W@110Vac	$2 A \cos \varphi 0.5$ 460VA @ 230 Vac 220VA @ 110 Vac	
H/LN4671M2 AM5851M2	2 fush mounting	BUS SCS	2 A 460W @ 230 Vac 220W@110Vac	70W @ 230 Vac 35W @ 110Vac 2 lamps maximum	0.3 A 70W @ 230 Vac 35W @ 110Vac	70W @ 230 Vac 35W @ 110 Vac 2 lamps maximum	0.3 A 70W@230 Vac 35W @ 110Vac	$2 A \cos \varphi 0.5$ 460VA @ 230 Vac 220VA @ 110 Vac	2A 460W @ 230 Vac 220W@110Vac
F411/1NC	2 DIN	BUS SCS	10 A 2300W @ 230 Vac 1100W @ 110Vac	500W @ 230 Vac 250W @ 110 Vac 10 lamps maximum	4 A 920W @ 230 Vac 440W @ 110 Vac	500W @ 230 Vac 250W @ 110 Vac 10 lamps maximum	4 A 920 W @ 230 Vac 440W@110 Vac	$4 \mathrm{~A} \cos \varphi 0.5$ 920 VA @ 230 Vac 440 VA @ 110 Vac	
F411/2NC	2 DIN	BUS SCS	6A 1380W @ 230 Vac 660W @ 110 Vac	-	0.65 A 150W @ 230 Vac 70W@110Vac	-	0.65 A 150W @ 230 Vac 70W@110Vac	$1 \mathrm{~A} \cos \varphi 0.5$ $230 \mathrm{VA} @ 230 \mathrm{Vac}$ 110Vac@110 Vac	
H/L4678	2 fush mounting	BUS SCS	0.25-1.30 A 60-300W@230Vac-50/60 Hz	-		-		$\begin{aligned} & 0.25-1.3 \mathrm{~A} \\ & 60-300 \mathrm{VA} @ 23 \mathrm{Vac}- \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	

TABLE OF THE LOADS

Actuators	Modules	Power supply of the device	Controllable loads						
			Incandescent and halogen lamps	LED lamps	Linear fluorescent lamps ${ }^{1)}$		Electronic transformers ${ }^{3)}$	Ferromagnetic transformers ${ }^{23 / 3}$	Reducer motor for shutters ${ }^{4)}$
F522	1 DIN	BUS SCS	10 A 2300W @ 230 Vac 1100W@110Vac	500 W @ 230 Vac 250W @ 110 Vac 10 lamps maximum	4A 920 W @ 230 Vac 440W @ 110 Vac	500 W @ 230 Vac 250W @ 110Vac 10 lamps maximum	4A 920W@230Vac 440W @ 110Vac	$4 \mathrm{~A} \cos \varphi 0.5$ 920 VA @ 230 Vac 440VA @ 110 Vac	
F523	1 DIN	BUS SCS	10 A 2300W@230 Vac 1100W @ 110Vac	500 W @ 230 Vac 250W @ 110Vac 10 lamps maximum	4 A 920W @ 230 Vac 440W @ 110 Vac	500 W @ 230 Vac 250W @ 110Vac 10 lamps maximum	4A 920W @ 230 Vac 440W@110Vac	$4 \mathrm{~A} \cos \varphi 0.5$ 920VA @ 230 Vac 440VA @ 110 Vac	
HD/HC/ HS/L/N/ NT4672N	2fush mounting	BUS SCS	10 A 2300W @ 230 Vac 1100W@110Vac	500 W @ 230 Vac 250W @ 110 Vac 10 lamps maximum	4 A 920W @ 230 Vac 440W @ 110 Vac	500 W @ 230 Vac 250W @ 110Vac 10 lamps maximum	4 A 920W @ 230 Vac 440W @ 110Vac	$4 \mathrm{~A} \cos \varphi 0,5$ 920VA @ 230 Vac 440VA @ 110 Vac	
F416U1	6 DIN	$100-240 \mathrm{Vac} @ 50 / 60 \mathrm{~Hz}$	4.3 A 40-1000W@230 Vac 40-500W @ 110 Vac			-	$\begin{aligned} & 4.3 \mathrm{~A} \\ & 40-1000 \mathrm{~W} @ 230 \mathrm{Vac} \\ & 40 \text { - } 500 \mathrm{~W} @ 11 \mathrm{Vac} \end{aligned}$	4.3 A 40 - 1000 VA @ 230 Vac 40 - 500 VA @ 110 Vac	
F417U2	6 DIN	100-240 Vac@ 50/60 Hz	1.7 A 40-400W @ 230 Vac 40-200W@110 Vac			-	1.7 A 40-400W@230 Vac 40-200W@110Vac	1.7 A 40-400W @ 230 Vac 20-200W@110Vac	-
BMDI1001	6 DIN	100-240 Vac@ $50 / 60 \mathrm{~Hz}$	4.3 A 1000 VA @ 230 Vac 500 VA @ 110 Vac		4.3 A 1000 VA @ 230 Vac 500 VA @ 110 Vac	4.3 A $1000 \mathrm{VA} @ 230 \mathrm{Vac}$ 500VA @ 110 Vac		-	-
BMSW1001	4 DIN	100-240 Vac@ $50 / 60 \mathrm{~Hz}$	16 A 3680W @ 230 Vac 1760W@110Vac	2.1 A 500 VA @ 230 Vac 250 VA @ 110 Vac	4.3 A $10 x(2 \times 36 \mathrm{~W})$ @ 230 Vac 5x(2x36W) @ 110 Vac	5A 1150VA @ 230 Vac 550VA @ 110 Vac	16 A 3680VA @ 230 Vac 1760 VA @ 110 Vac	16 A 3680 VA @ 230 Vac 1760VA @ 110 Vac	-
BMSW1002	4 DIN	100-240 Vac@ $50 / 60 \mathrm{~Hz}$	16 A 3680W @ 230 Vac 1760W@110 Vac	2.1 A 500 VA @ 230 Vac 250VA @ 110 Vac	4.3 A $10 x(2 \times 36 \mathrm{~W}) @ 230 \mathrm{Vac}$ 5x(2x36W) @ 110 Vac	$\begin{aligned} & \text { 5A } \\ & 1150 \mathrm{VA} @ 230 \mathrm{Vac} \\ & 550 \mathrm{VA} @ 110 \mathrm{Vac} \end{aligned}$	16 A 3680 VA @ 230 Vac 1760 VA @ 110 Vac	16 A 3680VA @ 230 Vac 1760 VA @ 110 Vac	-
BMSW1003	6 DIN	100-240 Vac@ 50/60 Hz	16 A 3680W @ 230 Vac 1760W@110 Vac	2.1 A 500 VA @ 230 Vac 250VA @ 110 Vac	$\begin{aligned} & 4.3 \mathrm{~A} \\ & 10 \times(2 \times 36 \mathrm{~W}) @ 230 \mathrm{Vac} \\ & 5 \times(2 \times 36 \mathrm{~W}) @ 110 \mathrm{Vac} \end{aligned}$	5 A 1150VA @ 230 Vac 550 VA @ 110 Vac	16 A 3680VA @ 230 Vac 1760 VA @ 110 Vac	16 A 3680VA @ 230 Vac 1760 VA @ 110 Vac	-

Notes:

1) fluorescent lamps with corrected power factor, energy saving lamps, discharge lamps.
2) it is necessary to consider the efficiency of the transformer in order to calculate the effective power of the actuator load. For instance, if you connect a dimmer to a 100VA ferromagnetic transformer with efficiency 0.8, the effective power of the load will be 125VA.
3) the transformer must be loaded at its rated power and, in any case, never below 90% of that power. It is recommended to use one transformer rather than several transformers in parallel. For instance, it is preferred to use one 250VA transformer with 5 50W spotlights connected rather than 5 50VA transformers in parallel, each with a 50W spotlight.
4) the \square Bymbol shown of the actuators refers to a reducer motor for shutters.
5) only compatible with the selected lamps with Ballast $1 / 10 \mathrm{~V}$.

Interfaces

CONTACT INTERFACE IN DIN MODULE

With this device it is possible to connect traditional devices to the BUS, such as switches and pushbuttons, thus extending the use of the BUS to traditional pre-existing systems.
It is also possible to interface thermostats, control devices, humidity detectors, wind detectors etc.

CONTACT INTERFACE IN BASIC MODULE

The essential feature of this device, due to the reduced overall dimensions, is the rear-device installation mode. As a result, it is possible to install the interface in a 503E box right behind the traditional devices (e.g. switch, pushbutton) or behind electronic shallow devices (e.g. controls, detectors).

It is also possible to interface thermostats, humidity detectors, wind detectors etc. This installation solution simplifies the conversion of traditional electric systems into home automation systems, as it makes it possible to keep the existing flush mounted boxes, without the need for masonry work.

Basic module
contact interface

Wire Automation extension with ZigBee radio devices

The wired automation system described in the previous pages can be expanded at any time by extending the wiring or adding new control devices.

However, this is not always easy to do; in some buildings, either historic and/or valuable buildings, the extension of the system entails unavoidable and costly interventions on the building work.

These problems can be easily resolved using the radio controls included in the ZigBee radio system range; being battery powered and independent from the system wiring, these devices give the possibility of
controlling the users from positions that cannot be reached by the BUS wiring. The "wireless" connection among these devices and the wired ones is ensured by a special radio interface connected to the BUS. The integration between the two technologies, radio and wired, enables therefore the installer to select each time the best solution that meets the requirements of the customer, both in terms of functionality, and in relation to the homes.

This solution can also be extended, with some advantages, to new buildings; for example in offices with
moving walls and with false ceiling mounted BUS actuators, the radio controls are the ideal solution for installing flexible light points, easy to reposition in case of modification in the arrangement of the offices, or the furniture.

For more information and for the range of control devices see the specific Radio System chapter of this guide.

POSSIBLE FUNCTIONS

- Shutter and rolling shutter automation
- Lighting

Scenario management

General concepts

This chapter describes the general concepts for the "physical" and "virtual" configuration of the MY HOME automation devices. For each item, the "Technical Sheets" chapter describes the functions that can be realised depending on the configurators used.

ACTUATORS:

ADDRESS AND TYPE OF

 CONTROLTo understand the addressing logical it is useful to define some terms which will occur frequently in this guide.

Room (A)

Set of devices belonging to a logical area (in a home, for example, the living room, the bedroom, etc.).
Light Point (PL)
Numeric identification of the single actuators inside the Room.

Group (G)
Set of devices also belonging to different rooms but which must be controlled at the same time (e.g. the rolling shutters of the North side of the home, the lighting of the day area, etc.).

ACTUATOR ADDRESS -

PHYSICAL CONFIGURATION

The address of each actuator is
defined uniquely by assigning the numeric configurators 1 to 9 in positions A (Room) and PL (Light Point inside the Room).
A maximum of 9 addresses can be defined for each room; a maximum of 9 rooms can be defined in a system. The group of belonging is defined by inserting a third numeric configurator in the housing identified with G (Group).
Some actuators have several G
Physical Configuration

positions (G1, G2 and G3) as they can belong to several different groups at the same time.

Example: The actuator configured with $A=1, P L=3$ and $G=4$ is device 3 of room 1 belonging to group 4.

ACTUATOR ADDRESS -

 VIRTUAL CONFIGURATIONA maximum of 16 addresses can be defined for each room($\mathrm{PL}=0-15$); a maximum of 16 rooms can be defined in a system. ($\mathrm{A}=0-10$).

LOGICAL EXTENSION

For special applications such as extended systems in houses or service/industrial rooms, where the use of many devices may exceed the configuration limits mentioned above, interface F422 can be used, configured in the "logical expansion" mode.

This mode can make an extended system made up of several individual systems (see "General rules for installation" section).

Virtual configuration

CONFIGURATION

General concepts

CONTROLS: ADDRESS AND TYPE OF CONTROL

The control devices also have positions A and PL to define the addresses of the devices which receive the control (actuators).

For these positions there are numeric
configurators with graphics which
enable the device to send the control with the various ways listed in the table below.

Mode for addressing the devices using the Physical Configuration			Mode for addressing the devices using the Virtual Configuration		
TYPE OF CONTROL	CONTROL DEVICE		TYPE OF CONTROL	CONTROL DEVICE	
	configurator socket	value of the configurator		Configurable address	Configuration
Point-point	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	$\begin{aligned} & 1-9 \\ & 1-9 \end{aligned}$	Point-point	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	$\begin{aligned} & 0-10 \\ & 0-15 \end{aligned}$
Room	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	$\begin{aligned} & \text { AMB } \\ & 1-9 \end{aligned}$	Room	$\begin{aligned} & \mathrm{A} \\ & \mathrm{PL} \end{aligned}$	$\begin{aligned} & \text { AMB } \\ & 0-10 \end{aligned}$
Group	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	$\begin{aligned} & \text { GR } \\ & \text { 1-9 } \end{aligned}$	Group	$\begin{aligned} & \mathrm{A} \\ & \mathrm{PL} \end{aligned}$	$\begin{aligned} & \text { GR } \\ & \text { 1-255 } \end{aligned}$
General	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	GEN	General	$\begin{aligned} & \text { A } \\ & \text { PL } \end{aligned}$	GEN

EXAMPLES OF CONFIGURATION

Point-point control
If the No. 3 control is configured with
$A=2$ and $P L=3$, this device sends
the control to the actuator identified with $A=2$ and $P L=3$.

Group control

If the No. 7 control is configured with $A=G R$ and $P L=1$, this device sends the control to the actuator
identified with $G=1$ (thus belonging to group 1).

Addressing levels

For a better understanding of the concepts described in the previous page, the four addressing modes are described below.

The control devices (senders) can activate the actuators (receivers) with the following modes.

POINT-POINT CONTROL

Direct control to one actuator
identified by a "room number" and a "light point number".

ROOM CONTROL

Direct control to all the actuators
identified by the same room number.

Example: control for a single load (lamp, fan, rolling shutter, etc.)

Example: control for all the lamps of a room

Control device:
Actuator:

$$
\begin{array}{ll}
A=A M B & P L=n^{*} \\
A=n^{*} & P L=n^{*}
\end{array}
$$

GROUP CONTROL

Direct control to all the actuators
which perform particular functions
even if they belong to different
rooms and are identified by the same
"group number".

Example: control of all the lamps of a floor, on the North side of the building

CONFIGURATION

Addressing levels

GENERAL CONTROL

Direct control to all the system actuators

Main operating modes

The devices in the automation system can perform different functions, such as setting the brightness, switching lamps on/off or opening/closing rolling shutters.

The function performed, i.e. what the device must do, is defined by putting configurators into the housings marked with M of the control devices and completing the devices with keys and key covers (if the devices
are flush mounted). The table below lists the various operating modes as a function of the configurator and type of key cover used in the device.

CONTROL TABLE		
Key covers	Configurator value (M)	Function performed
1 FUNCTION		
\rightleftharpoons	no configurator	Cyclical ON-OFF control Repeatedly pressing the relay actuators device key cover, ON and OFF controls will be sent in a cyclical way. With dimmer actuators, keep the pushbutton pressed to adjust the load power.
	configurator ON	ON control When pressing the corresponding key cover, the device sends the ON control.
	configurator OFF	OFF control When pressing the corresponding key cover, the device sends the OFF control.
	configurator PUL	Monostable ON-OFF control (pushbutton) This mode can perform an ON/OFF control similar to the control of a traditional point-point pushbutton, thus intended just for one address.
2 FUNCTIONS		
	configurator $\uparrow \downarrow$	Bistable control with hold (UP-DOWN for rolling shutters) Pressing the key cover (lower or upper) sends the UP-DOWN control to the rolling shutter motor. After the control has been sent, press the lower or upper key cover again, to stop the rolling shutter in the required position.
	configurator $\uparrow \downarrow \mathrm{M}$	Monostable control (UP-DOWN for rolling shutters) The device sends an UP-DOWN control for a rolling shutter motor as long as the lower or upper key cover is pressed. When the key cover is released, the motor STOPS.
	configurator 0/I	ON/OFF control Used with relay actuators, when the upper key cover is pressed the device sends an ON control; when the lower key cover is pressed the device sends an OFF control.With dimmer actuators, pressing the upper and lower key cover adjusts the load power.

Main operating modes

CEN OPERATING MODE

This particular mode is used to manage scenario programmer devices MH200N.
As described in the pages of this guide, the device can manage even complex scenarios activated automatically after events in the system or manually by pressing a key of a control device configured
with the CEN configurator in the M position. The key (upper or lower) of the control device and the scenario to be activated are linked through the TiMH200 program written to create the scenarios and then saving them in the MH200N device. For example, two independent scenarios can be activated using the special control H/L4651M2,

AM5831M2, by pressing the T1 (upper) and T2 (lower) pushbuttons. For the correspondence between the control keys and the scenarios to activate see the table:

Type of control	Configuration	Identification of scenario activation keys
Special control H/L4651M2 and AM5831M2	$A=0-9 ; P L=0-9 ; M=C E N ; L V 1 / A U X=0 ; L L V 2=0 ; S P E=0 ; 1=0$	
		$\frac{\square}{T 2}$
Basic control for 2 independent loads H/L4652/2 and AM5832/2	$A 1=0-9 ; P L 1=0-9 ; M 1=C E N ; ~ A 2=0 ; P L 2=0 ; M 2=0$	
		$\frac{\square}{T 2}$
Basic control for 3 independent loads H/L4652/3 and AM5832/3	$A 1=0-9 ; P L 1=0-9 ; A 2=0 ; P L 2=0 ; A 3=0 ; P L 3=0 ; M=C E N$	

MAIN ACTUATOR OPERATING MODES

The actuators can be configured for the following operating modes:

ACTUATOR TABLE	
Configurator value (M)	Function performed
configurator $1 \div 4$	Special functions This mode can perform special functions (OFF delayed, STOP timed) on the basis of the type of actuator used (single or double) and the numeric configurator inserted.
configurator SLA	Slave This mode can perform a control with two or more actuators. In practice the actuators with the SLA (Slave) configurator repeat the function performed by another actuator which acts as Master. The actuators must have the same addresses and must be of the same type (either all light actuators or all rolling shutter actuators).
configurator PUL	PUL The device does not operate with the Room and General controls.

Examples of configuration

The drawing shows a system for the management of three lamps and three shutters. Each actuator is identified by three numbers: Room number (A), device progressive number (PL for light actuators and PL1 and PL2 for shutter actuators) and Group (G) of belonging.

DEFINING THE ADDRESSES

Point-point control
Control 1 ($\mathrm{A}=1, \mathrm{PL}=1$) controls actuators $1(\mathrm{~A}=1, \mathrm{PL}=1$ and $\mathrm{G}=1)$. In the same way control $2(\mathrm{~A}=1$, PL = 2) controls actuator $2(\mathrm{~A}=1$, $\mathrm{PL}=2$ and $\mathrm{G}=1$) etc..

Room control
Room control 8 ($\mathrm{A}=\mathrm{AMB}, \mathrm{PL}=2$) controls actuators 4 and 5 marked with $A=2$

Group control

Group control 7 marked with $A=G R$ and $\mathrm{PL}=1$, controls actuators 1 and 2 marked with $\mathrm{G}=1$

General control
The devices identified $A=G E N$ and $P L=-$ (no configurator) send a general control to all the actuators, for the lights and for the shutters, in the system.

NOTE: The actuators which manage the shutters, unlike those for the lights, are configured in the same way in the two positions PL1 and PL2.

The control devices are instead distinguished from the configurators in positions A and PL which specify the addresses of the actuators
receiving the control (one only, a group or several room actuators) and from the configurators in position M to define the function (ON/OFF or ON/DOWN)

CONTROL OPERATING MODE

The configurator inserted in position M of each control device identifies the operating mode.

The O/I configurator specifies a lamp switching on control which is given by pressing the upper key cover (ON) and the lower key cover (OFF).

The configurators $\uparrow \downarrow$ and $\uparrow \downarrow \mathrm{M}$ in position M instead specify a control to manage the rolling shutters intended for actuators 4,5 and 6 .

Maximum distances and absorptions

This chapter outlines the details for ensuring a correct realisation of a MY HOME automation system:
■ Selv classification

- Maximum distances and absorptions
- Maximum number of devices which can be configured

SELV CLASSIFICATION

The automation system is SELV (Safety Extra Low Voltage) classified due to the fact that it is powered using double safety insulation independent devices, not connected to the earth, and with maximum operating voltage of 27 Vdc , nonundulated, in accordance with CEI EN 600065. It is therefore comparable to a SELV source as described in point 411.125 of CEI 64-8-4. The conformity to SELV classification is only guaranteed subject to full compliance with current installation regulations, and with the general rules for installation for each single device and cable making up the system recommended by BTicino.

MAXIMUM DISTANCES OF THE BUS CABLE AND ABSORPTIONS

The maximum number of devices that can be connected to the BUS depends on their total absorption and on the distance between the connection point and the power supply. The power supply unit can deliver up to 1200 mA or 600 mA ; ihence, the maximum number of devices will be determined by the sum of the absorptions of the single devices you need to install.

For the purpose of the above
calculations, refer to the TECHNICAL
DATA shown in the Technical Sheets chapter

When calculating the absorptions, it is also necessary to consider the
$\sqrt{1}$ The connection between the power supply and the furthest away device must not be longer than 250 m .

2) The total length of the connections must not be more than 500 metres (extended cable).

3 For optimum division of the currents on the BUS line power supply should be positioned in the middle.

With Power supply E46ADCN:
A $=250 \mathrm{~m}$ max
B $=250 \mathrm{~m}$ max
$\mathbf{A}+\mathbf{B}=500 \mathrm{~m}$
Maximum current supplied from the power supply 1200 mA .

With Power supply E49:
A $=250 \mathrm{~m}$ max
B $=250 \mathrm{~m}$ max
$\mathbf{A}+\mathbf{B}=500 \mathrm{~m}$
Maximum current supplied from the power supply 600 mA .

NOTE: If a UTP5 cable is used instead of a BUS L4669 cable, distances must halved.

Maximum distances and absorptions

MAXIMUM DISTANCES FOR THE

 CONNECTION OF ACTUATORS DEPENDING ON THE LOADIn order to manage some types of loads correctly, it is necessary to observe the installation specifications for all actuators used.

- Fluorescent lamps: the length of the connecting cable between the actuator and the load must not be less than 3 m . Do not connect more than 15 actuators controlling this type of lamp on the same line.

■ Metallic iodide and sodiumvapor lamps: in addition to the indications given for the fluorescent lamps, please pay attention to the operating instructions of these lamps (for example, avoid switching on when hot), do not connect dimmers to the same line of these lamps, keep the bus line and the power line of these lamps separated from each other (at least 1 metre) - Three-phase networks: when using three-phase networks, check the balance of the phases as well as the quality of the network. Non-compliance of the above regulations may affect proper operation of the devices.

MAXIMUM DISTANCE FOR

 CONNECTING THE CONTACT INTERFACEThe connection between the interface (basic or DIN module) and the traditional type device must not exceed 50 metres in length. Several pushbuttons may be connected to the interface inputs.

Example of connection with F411/1N

Warning: Refer to the technical data shown on the technical sheets for each actuator

ABSORPTIONS, SIZE AND DISSIPATIONS

Item	Description	Absorption from Bus (power supply 27 Vcc)	Size	Dissipation	
				Dissipated power with max. load	Max. load
3475	actuator	13 mA	Basic module		
3476	control actuator	13 mA	Basic module		
3477	contact interface	3.5 mA	Basic module		
E46ADCN	power supply		8 DIN modules	11 W	1.2 A
				6 W	0.5 A
E49	mini power supply		2 DIN modules	5.3W	
F411/1N ${ }^{11}$	1-relay actuator	22 mA	2 DIN modules	1.5W	
F411/2 ${ }^{11}$	2-relay actuator	28 mA (single loads) 15.5 mA (interlock)	2 DIN modules	1.7W	
F411/4 ${ }^{11}$	4-relay actuator	40 mA (single loads) 22 mA (interlock)	2 DIN modules	3.2 W	
F412 ${ }^{11}$	1-relay NC/NA actuator	20 mA	2 DIN modules	1.5W	
F413N ${ }^{11}$	output 1 to 10 for ballast	30 mA	2 DIN modules	0.5W	
F414	DIN dimmer	9 mA	4 DIN modules	11W	1000W
				5W	500W
F415	DIN dimmer	9 mA	4 DIN modules	11 W	400W
F522	actuator 16A with current sensor	30 mA	1 DIN module		
F523	actuator 16A	10 mA	1 DIN module		
F420	scenario module	20 mA	2 DIN modules	0.6W	
F422	SCS/SCS interface	IN: 25 mA OUT: 2mA	2 DIN modules	1 W	
F425	memory module	5 mA	2 DIN modules	0.1W	
F426	SCS/EIB interface	30 mA	6 DIN modules		
F427	OPEN KNX interface		6 DIN modules		
F428	contact interface	9 mA	2 DIN modules	0.2W	
F429	SCS/DALI interface	5 mA	6 DIN modules		
H/L4651M2 AM5831M2	special control	6 mA for H4651M2 8.5 mA for L4651M2 and AM5831M2	2 flush-mounting mod.		
H/L4652/2 AM5832/2	control for 2 actuators	9 mA	2 flush-mounting mod.		
H/L4652/3 AM5832/3	control for 3 actuators	9 mA	3 flush-mounting mod.		
H/L4671/1 AM5851/1	1-relay actuator	16.5 mA	2 flush-mounting mod.	0.9W	
H/LN4671M2 AM5851M2	control/actuator	14 mA	2 flush-mounting mod.		
H/L4678	flush-mounting dimmer	9 mA	2 fush-mounting mod.	3W	300W
H/L4684	colour Touch Screen	80 mA	$3+3$ flush-mounting mod.		
HD/HC/HS/L/N/NT4575SB	SB receiving radio interface	33 mA	2 flush-mounting mod.		
HD/HC/HS/L/N/NT4607	protected control	15 mA	2 flush-mounting mod.		
HD/HC/HS/L/N/NT4607/4	protected scenario control	12 mA	2 fush-mounting mod.		
HD/HC/HS/L/N/NT4610	fixed IR detector	4.5 mA	2 flush-mounting mod.		
HD/HC/HS/L/N/NT4611	swivel IR detector	4.5 mA	2 flush-mounting mod.		
HD/HC/HS/L/N/NT4672N	16 A flush mounted 2 module actuator	10 mA	2 fush-mounting mod.		
HD/HC/HS/L/N/NT4680	scenario control	9 mA	2 flush-mounting mod.		
BMSE1001	passive infrared ceiling sensor	10 mA	$1=75 / p=40 / \mathrm{h}=20$		
BMSE2001	wide band wall/ceiling sensor	12 mA	\| $=115.86 / \mathrm{p}=69.6 / \mathrm{h}=91$		
BMSE2002	narrow band wall/ceiling sensor	12 mA	\| $=115.86 / \mathrm{p}=69.6 / \mathrm{h}=92$		
BMSE2003	two-way narrow band wall/ceiling sensor	12 mA	\|=115.86/p=69.6/h=93		
BMSE2004	one-way narrow band wall/ceiling sensor	12 mA	\| $=115.86 / \mathrm{p}=69.6 / \mathrm{h}=94$		
BMSE2005	double technology band wall/ceiling sensor	17 mA	\|=115.86/p=69.6/h=95		
F416U1	dimmer actuator1000W TC	5 mA	6 DIN modules	8W	1000 W
F417U2	dimmer actuator1000W $2 \times 400 \mathrm{WTC}$	5 mA	6 DIN modules	8 W	2X400W
BMDI1001	dimmer actuator1000W 1/10 V	5 mA	6 DIN modules		
BMSW1001	1-relay 230 Vac actuator	5 mA	4 DIN modules	1.2 W	
BMSW1002	2-relay 230 Vac actuator	5 mA	4 DIN modules	1.7 W	
BMSW1003	4-relay 230 Vac actuator	5 mA	6 DIN modules	2.8W	

NOTE:

1) the power dissipated indicated is that corresponding to the device with all the relays loaded at the load maximum. If the load is less the dissipated power is less and may be calculated by means of the following formula: $P[m W]=140+400^{*} N+10^{*}[112+122+\ldots$..IN2]
P: dissipated power in $m W$,

N: no. of loaded relays

IN: load current corresponding to the N relay.
Install the items with greater dissipated power (in special power supplies and dimmers) in lower positions in the switchboard for easier heat dissipation.
Do not place devices which dissipate a power greater than 5W side by side, but leave an empty module between them.

Maximum distances and absorptions

If the absorption of the whole system is less than 600 mA , the E49 compact power supply can be used. If the absorption is between 600 and 1200 mA , use the E46ADCN power supply. For extended systems with current absorption over 1200 mA or 600 mA powered by power supplies E46ADCN and E49, it will be necessary to split the system into several lines, each powered by its own power supply and connected to each other using interface F422 configured in "Physical expansion" mode.

PHYSICAL EXPANSION MODE

Limit systems shall be applied to each bus in terms of absorption and maximum wiring distance, as shown in the previous page. Therefore, it is not possible to supply a system consisting of two or more buses with only one power supply unit E46ADCN or E49, connected to each other by interfaces configured in "physical expansion" mode even if the number and type of components connected to the system do not exceed the set maximum absorption (1200 mA).

Positions I3 and I4 shall be configured according to the configuration of the Automation devices in the two systems connected to each other. With reference to the picture, let us suppose, for example, that $13=2,14=7$: - on the input bus (IN), the addresses of Automation devices No. 1 must be between $A=1 / P L=1$ and $A=2 /$ PL=6;
■ on the output bus (OUT), the addresses of Automation devices
No. 2 must be between $A=2$ /
$\mathrm{PL}=8$ to the address of the next interface.

INSTALLATION RULES

When setting up the system, consider the following recommendations:
■ The buses, connected to the interface input and output, must be supplied with their own power supply unit; additionally, the system limits apply for each of them, in terms of absorption and maximum distance.

- Therefore, it is not possible to supply a system consisting of two or more buses with only one power supply unit (E46ADCN or E49) connected to each other by various interfaces configured in physical expansion mode even if the number and type of components connected to the system do not exceed the set maximum absorption (1200 mA). - It is not possible to connect two interfaces in parallel to the same BUS

■ It is possible to use up to 4 interfaces in series, which divide the system into 5 separate sections.

■ The F420 scenario module, the F425 memory module, and the devices that can be configured using the self-learning mode must be installed on the bus section corresponding to their own local address. For example if the scenario module is configured as $\mathrm{A}=0$ (no configurator), $\mathrm{PL}=1$, it will have to be placed on section 1 of the system. The energy management system central unit F421 and the control panel N4682 must be installed on the BUS with the highest addresses (system no. 3 in the example).

Maximum number of devices which can be configured

PHYSICALLY CONFIGURED

SINGLE SYSTEM

A single system can manage up to 9 rooms (A). For each room, it will then be possible to manage up to 9 light
points (PL), for a total of 81 addresses.
To these addresses, any inclusion in one or more groups must be added.

It is also possible to have several devices with the same address.

VIRTUALLY CONFIGURED

SINGLE SYSTEM

A single system can manage up to 11 rooms ($A=0-10$). For each room it will then be possible to manage up to 16
light points ($\mathrm{PL}=0-15$), for a total of 175 addresses (the address $\mathrm{A}=0, \mathrm{PL}=0$ is not permitted).

Logical expansion of the addresses

VIRTUALLY CONFIGURED

EXTENDED SYSTEM WITH ONE

F422 INTERFACE

In larger homes, or in the service sector, there might be the need for Automation systems with a higher number of functions than the above. In this case, it is possible to create an extended Automation system
using interface F422 configured in the "logic expansion" mode: with configurator NO. 2 in position M, and No. 1 in 14.

Logical expansion of the addresses

VIRTUALLY CONFIGURED EXTENDED SYSTEM WITH SEVERAL F422 INTERFACES

If three or more systems (up to a maximum of 9) must be combined, these must be connected by means of interfaces F422 with a common bus, which from now on we will call "riser", on which the control, activation and management (for example Touch Screen) devices can also be installed because they belong to the Automation system. The riser cannot be made, for example, with a Burglar-alarm or 2 wire Video door entry system. The F422 interfaces are configured for operation in "logic expansion" mode, connecting configurator no. 2 to the M position and configuring the address of position 14 with configurators from 1 to 9 , as per the following diagram. For each of the 9 systems there will be 174 configuration addresses available, excluding the interface address, as well as 166 addresses on the riser, for a total of 1732 addresses.

Warnings:

- In the main riser it is possible to install control devices configured to send GROUP or GENERAL controls to some or all of the actuators situated in the single systems and in the same main riser. - POINT-POINT controls generated inside each single system and on the main riser can reach the actuators situated in the whole system only if they are sent from the appropriately configured SPECIAL control device H/L4651M2, AM5831M2 situated on the main riser or on one of the single systems (max 9) connected.
- If you need to control and execute the centralised management of the system with Web Server, Touch screen and Energy Management Control Unit, these devices will have to be installed in the main riser.

MAIN RISER 166 ADDRESSES MAX.

EXTENDED SYSTEM WITH

INTERFACE F422 AND WEB

SERVER

Special systems for which the availability of more than 1739
addresses is required can be made
using one or more Web Servers F454 and a LAN network which forms the connection infrastructure.

Referring to the picture below, in this

Lighting management

DIAGRAM 1 SWITCHING ON/OFF OF 2 LAMPS FROM 4 LIGHT POINTS WITH GENERAL ON/OFF CONTROL

DIAGRAM 2 AUTOMATIC SWITCHING ON OF THE LIGHT WITH PASSIVE INFRARED CEILING SENSOR

The device controls the load with the address indicated in A and PL. When a movement is detected, if the lighting level is lower than the set level, the device switches the assigned load on, and keeps it on until the time set with the configurator connected to T expires. The PIR movement sensor sensitivity is set with the configurator connected to S. For correct operation the sensor Lighting set point must be defined (see procedure). If the user switches the light off manually with a control device, the movement sensor is disabled until a presence is detected, for a time set in T.

DIAGRAM 4 WIRE SYSTEM EXTENSION WITH RADIO CONTROL TO MANAGE TWO LAMPS

Note: Replacing actuator F411/1N with actuator dimmer F414 and F414/127 the lamp brightness can be adjusted as well Note (*): assign an address not used for other Automation devices. The interface can manage up to 36 radio control devices.

Management of different loads

DIAGRAM 5 SWITCHING-ON CONTROL FOR BATHROOM LIGHT AND FAN WITH DELAYED SWITCHING-OFF

DIAGRAM 6 MOTOR CONTROL IN DIRECT CURRENT FOR MOTORISED CURTAINS (EXAMPLE 24 V D.C.)

Window and shutter management

DIAGRAM 7 MOTOR CONTROL IN ALTERNATED CURRENT FOR ROLLING SHUTTERS, CURTAINS OR MOTORISED SHUTTERS

DIAGRAM 8 MOTOR CONTROL IN ALTERNATED CURRENT FOR OPENING/CLOSING MOTORISED SHUTTERS

Management of dimmer lamps

DIAGRAM 9 SWITCHING ON AND OFF AND BRIGHTNESS ADJUSTMENT OF FLUORESCENT LAMPS

BY MEANS OF THE "BALLAST"

DIAGRAM 10 SWITCHING ON AND OFF AND BRIGHTNESS ADJUSTMENT OF INCANDESCENCE LAMPS, HALOGEN AND FERROMAGNETIC TRANSFORMERS

Lighting and shutter management

DIAGRAM 11 LIGHTING AND SHUTTER MANAGEMENT SYSTEM - 100 M² HOME

The following pages give a description of an Automation system used for lighting and shutter management in a home of approximately $100 \mathrm{~m}^{2}$, consisting of living room, kitchen, two bedrooms and two bathrooms.

Functions performed by the system:

- Light general control.
- Shutters general control.
- Control of light points in each room.

■ Control of shutters in each room.

Dimmer light control point in the living room and the bedrooms.

■ Central control using the Touch Screen installed in the living room.

- Recalling of scenarios with Local Display in the two bedrooms.

DISTRIBUTION COMPONENTS IN THE SINGLE ROOMS		ITEM
HALL	1 lighting general control (1) 1 shutter general control (2) 1 ceiling light point controlled by flush mounted actuator (3) 1 control (4) for the corridor light point	$\begin{aligned} & H 4652 / 2 \\ & H 4652 / 2 \\ & H 4671 / 1 \\ & H 4652 / 2 \end{aligned}$
CORRIDOR	2 ceiling light points controlled by flush mounted actuator and 8 other points (4-6-7-9-13-22-28)	H4671/1
KITCHEN	1 ceiling light point controlled from one point (7) and by a 1 relay actuator in the DIN module (*) 1 motorised shutter controlled from 1 point (8) and by a 2 relay actuator in the DIN module (*)	H4652/2 F411/1N H4652/2 F411/2
LIVING ROOM	```1 wall light point controlled from 1 point (11) with light intensity adjustment and by 1 dimmer actuator in DIN module (*) 1 ceiling light point controlled from two points (9-11) and by a 1 relay actuator in the DIN module (\({ }^{*}\)) 1 motorised shutter controlled from 1 point (10) and by a 2 relay actuator in the DIN module (\({ }^{*}\)) 1 Touch Screen (12)```	H4652/2 F415 H4652/2 F411/1N H4652/2 F411/2 H4890
BATHROOM 1	1 ceiling light point controlled from one point (13) and by a 1 relay actuator in the DIN module (*) 1 motorised shutter controlled from 1 point (14) and by a 2 relay actuator in the DIN module (*)	H4652/2 F411/1N H4652/2 F411/2
ROOM 1	```1 ceiling light point controlled from 3 points (16-17-18) with light intensity adjustment and by 1 dimmer actuator in DIN module (*) 1 motorised shutter controlled from 1 point (15) and by a 2 relay actuator in the DIN module (*) 1 wall light point controlled from 1 point (17) 1 wall light point controlled from 1 point (18) and by a2 relay actuator in the DIN module (*) 1 control (20) for the Corridor Light Point 1 Local Display (19)```	H4652/2 F415 H4652/2 F411/2 H4652/2 H4652/2 F411/2 H4652/2 HS4891
ROOM 2	```1 ceiling light point controlled from 3 points (22-23-24) with light intensity adjustment and by 1 dimmer actuator in DIN module (*) 1 motorised shutter controlled from 1 point (21) and by a2 relay actuator in the DIN module (*) 1 wall light point controlled from 1 point (23) 1 wall light point controlled from 1 point (24) and by a 2 relay actuator in the DIN module (*) 1 control (26) for the Corridor Light Point 1 Local Display (25)```	$\begin{aligned} & H 4652 / 2 \\ & \text { F415 } \\ & H 4652 / 2 \\ & \text { F411/2 } \\ & H 4652 / 2 \\ & H 4652 / 2 \\ & \text { F411/2 } \\ & \text { H4652/2 } \\ & \text { HC4685 } \end{aligned}$

NOTE: All the controls must be completed with support, cover plate and key covers for the desired civil series. These can be found in the BTicino General Installation catalogue. For this specific example products of the AXOLUTE civil series have been used.
NOTE (*): All the actuators in DIN module are installed on the 54 module home automation panel in the hall.

HOME AUTOMATION PANEL		DIN MODULES
2 1 SCS power supply$\quad 8$		

HOME AUTOMATION PANEL		DIN MODULES
	3	
	3 DIN dimmer	12
	1 scenario module	2
		Total 46

Lighting and shutter management

ROOM 2

I

N

ROOM 1

[^0]: HD = WHITE, HC = IECH, HS = ANTHRACIIE, L = ANTHRACITE, N = WHIIE, $N T=$ TECH

 * Complete the Key cover code with the letters corresponding to the required screen printing (see table). For the complete range of LIVINGLIGHT key covers see the "Catalogue" section.

[^1]: *To be completed with key cover

[^2]: $H D=$ WHITE, $H C=T E C H, H S=$ ANTHRACITE, $L=$ ANTHRACITE, $N=$ WHITE, $N T=$ TECH

 * Complete the Key cover code with the letters corresponding to the required screen printing (see table).

[^3]: * To be completed with key cover

